
LD.SO(8) LinuxProgrammer’s Manual LD.SO(8)

NAME
ld.so, ld-linux.so* − dynamic linker/loader

SYNOPSIS
The dynamic linker can be run either indirectly by running some dynamically linked program or library (in
which case no command-line options to the dynamic linker can be passed and, in the ELF case, the
dynamic linker which is stored in the.interp section of the program is executed) or directly by running:

/lib/ld-linux.so.* [OPTIONS] [PROGRAM [ARGUMENTS]]

DESCRIPTION
The programsld.so and ld-linux.so* find and load the shared libraries needed by a program, prepare the
program to run, and then run it.

Linux binaries require dynamic linking (linking at run time) unless the−static option was given to ld(1)
during compilation.

The programld.so handles a.out binaries, a format used long ago;ld-linux.so* handles ELF (/lib/ld-
linux.so.1for libc5, /lib/ld-linux.so.2for glibc2), which everybody has been using for years now. Otherwise
both have the same behavior, and use the same support files and programsldd(1), ldconfig(8) and
/etc/ld.so.conf.

When resolving library dependencies, the dynamic linker first inspects each dependency string to see if it
contains a slash (this can occur if a library pathname containing slashes was specified at link time). If a
slash is found, then the dependency string is interpreted as a (relative or absolute) pathname, and the library
is loaded using that pathname.

If a library dependency does not contain a slash, then it is searched for in the following order:

o (ELF only) Using the directories specified in the DT_RPATH dynamic section attribute of the binary if
present and DT_RUNPATH attribute does not exist. Useof DT_RPATH is deprecated.

o Using the environment variableLD_LIBRARY_P ATH. Except if the executable is a set-user-ID/set-
group-ID binary, in which case it is ignored.

o (ELF only) Using the directories specified in the DT_RUNPATH dynamic section attribute of the binary
if present.

o From the cache file/etc/ld.so.cache, which contains a compiled list of candidate libraries previously
found in the augmented library path. If, however, the binary was linked with the−z nodeflib linker
option, libraries in the default library paths are skipped.Libraries installed in hardware capability
directories (see below) are preferred to other libraries.

o In the default path/lib, and then/usr/lib. If the binary was linked with the−z nodeflib linker option,
this step is skipped.

Rpath token expansion
ld.so understands certain strings in an rpath specification (DT_RPATH or DT_RUNPATH); those strings
are substituted as follows

$ORIGIN (or equivalently ${ORIGIN})
This expands to the directory containing the application executable. Thus,an application located
in somedir/appcould be compiled with

gcc -Wl,-rpath,'$ORIGIN/../lib'

so that it finds an associated shared library insomedir/libno matter wheresomedir is located in
the directory hierarchy. This facilitates the creation of "turn-key" applications that do not need to
be installed into special directories, but can instead be unpacked into any directory and still find
their own shared libraries.

GNU 2013-07-15 1

LD.SO(8) LinuxProgrammer’s Manual LD.SO(8)

$LIB (or equivalently ${LIB})
This expands tolib or lib64 depending on the architecture (e.g., on x86-64, it expands tolib64 and
on x86-32, it expands tolib).

$PLATFORM(or equivalently ${PLATFORM})
This expands to a string corresponding to the processor type of the host system (e.g., "x86_64").
On some architectures, the Linux kernel doesn’t provide a platform string to the dynamic linker.
The value of this string is taken from theAT_PLATFORM value in the auxiliary vector (see
getauxval(3)).

OPTIONS
−−list List all dependencies and how they are resolved.

−−verify
Verify that program is dynamically linked and this dynamic linker can handle it.

−−library−path PATH
Use PATH instead ofLD_LIBRARY_P ATH environment variable setting (see below).

−−inhibit−rpath LIST
Ignore RPATH and RUNPATH information in object names in LIST. This option is ignored if
ld.so is set-user-ID or set-group-ID.

−−audit LIST
Use objects named in LIST as auditors.

HARDWARE CAPABILITIES
Some libraries are compiled using hardware-specific instructions which do not exist on every CPU. Such
libraries should be installed in directories whose names define the required hardware capabilities, such as
/usr/lib/sse2/. The dynamic linker checks these directories against the hardware of the machine and selects
the most suitable version of a given library. Hardware capability directories can be cascaded to combine
CPU features. The list of supported hardware capability names depends on the CPU.The following names
are currently recognized:

Alpha ev4, ev5, ev56, ev6, ev67

MIPS loongson2e, loongson2f, octeon, octeon2

Po werPC
4xxmac, altivec, arch_2_05, arch_2_06, booke, cellbe, dfp, efpdouble, efpsingle, fpu, ic_snoop,
mmu, notb, pa6t, power4, power5, power5+, power6x, ppc32, ppc601, ppc64, smt, spe, ucache,
vsx

SPARC
flush, muldiv, stbar, swap, ultra3, v9, v9v, v9v2

s390 dfp, eimm, esan3, etf3enh, g5, highgprs, hpage, ldisp, msa, stfle, z900, z990, z9-109, z10, zarch

x86 (32-bit only)
acpi, apic, clflush, cmov, cx8, dts, fxsr, ht, i386, i486, i586, i686, mca, mmx, mtrr, pat, pbe, pge,
pn, pse36, sep, ss, sse, sse2, tm

ENVIRONMENT
There are four important environment variables.

LD_ASSUME_KERNEL
(glibc since 2.2.3) Each shared library can inform the dynamic linker of the minimum kernel ABI
version that it requires.(This requirement is encoded in an ELF note section that is viewable via
readelf −n as a section labeledNT_GNU_ABI_TAG.) At run time, the dynamic linker deter-
mines the ABI version of the running kernel and will reject loading shared libraries that specify
minimum ABI versions that exceed that ABI version.

LD_ASSUME_KERNEL can be used to cause the dynamic linker to assume that it is running on

GNU 2013-07-15 2

LD.SO(8) LinuxProgrammer’s Manual LD.SO(8)

a system with a different kernel ABI version. For example, the following command line causes
the dynamic linker to assume it is running on Linux 2.2.5 when loading the shared libraries
required bymyprog:

$ LD_ASSUME_KERNEL=2.2.5 ./myprog

On systems that provide multiple versions of a shared library (in different directories in the search
path) that have different minimum kernel ABI version requirements,LD_ASSUME_KERNEL
can be used to select the version of the library that is used (dependent on the directory search
order). Historically, the most common use of theLD_ASSUME_KERNEL feature was to manu-
ally select the older LinuxThreads POSIX threads implementation on systems that provided both
LinuxThreads and NPTL (which latter was typically the default on such systems); see
pthreads(7).

LD_BIND_NOT
(glibc since 2.2) Don’t update the Global Offset Table (GOT) and Procedure Linkage Table (PLT)
when resolving a symbol.

LD_BIND_NOW
(libc5; glibc since 2.1.1) If set to a nonempty string, causes the dynamic linker to resolve all sym-
bols at program startup instead of deferring function call resolution to the point when they are first
referenced. Thisis useful when using a debugger.

LD_LIBRARY_P ATH
A colon-separated list of directories in which to search for ELF libraries at execution-time. Simi-
lar to thePATH environment variable. Ignoredin set-user-ID and set-group-ID programs.

LD_PRELOAD
A l ist of additional, user-specified, ELF shared libraries to be loaded before all others. The items
of the list can be separated by spaces or colons. This can be used to selectively override functions
in other shared libraries. The libraries are searched for using the rules given under DESCRIP-
TION. For set-user-ID/set-group-ID ELF binaries, preload pathnames containing slashes are
ignored, and libraries in the standard search directories are loaded only if the set-user-ID permis-
sion bit is enabled on the library file.

LD_TRACE_LOADED_OBJECTS
(ELF only) If set to a nonempty string, causes the program to list its dynamic library dependen-
cies, as if run byldd(1), instead of running normally.

Then there are lots of more or less obscure variables, many obsolete or only for internal use.

LD_AOUT_LIBRARY_P ATH
(libc5) Version ofLD_LIBRARY_P ATH for a.out binaries only. Old versions of ld−linux.so.1
also supportedLD_ELF_LIBRARY_P ATH.

LD_AOUT_PRELOAD
(libc5) Version ofLD_PRELOAD for a.out binaries only. Old versions of ld−linux.so.1 also sup-
portedLD_ELF_PRELOAD .

LD_AUDIT
(glibc since 2.4) A colon-separated list of user-specified, ELF shared objects to be loaded before
all others in a separate linker namespace (i.e., one that does not intrude upon the normal symbol
bindings that would occur in the process).These libraries can be used to audit the operation of the
dynamic linker.LD_AUDIT is ignored for set-user-ID/set-group-ID binaries.

The dynamic linker will notify the audit libraries at so-called auditing checkpoints—for example,
loading a new library, resolving a symbol, or calling a symbol from another shared object—by
calling an appropriate function within the audit library. For details, seertld-audit (7). Theaudit-
ing interface is largely compatible with that provided on Solaris, as described in itsLinker and
Libraries Guide, in the chapterRuntime Linker Auditing Interface.

GNU 2013-07-15 3

LD.SO(8) LinuxProgrammer’s Manual LD.SO(8)

LD_BIND_NOT
(glibc since 2.1.95) Do not update the GOT (global offset table) and PLT (procedure linkage table)
after resolving a symbol.

LD_DEBUG
(glibc since 2.1) Output verbose debugging information about the dynamic linker. If set to all
prints all debugging information it has, if set tohelp prints a help message about which categories
can be specified in this environment variable. Sinceglibc 2.3.4,LD_DEBUG is ignored for set-
user-ID/set-group-ID binaries.

LD_DEBUG_OUTPUT
(glibc since 2.1) File in whichLD_DEBUG output should be written. The default is standard out-
put. LD_DEBUG_OUTPUT is ignored for set-user-ID/set-group-ID binaries.

LD_DYNAMIC_WEAK
(glibc since 2.1.91) Allow weak symbols to be overridden (reverting to old glibc behavior). For
security reasons, since glibc 2.3.4,LD_DYNAMIC_WEAK is ignored for set-user-ID/set-group-
ID binaries.

LD_HWCAP_MASK
(glibc since 2.1) Mask for hardware capabilities.

LD_KEEPDIR
(a.out only)(libc5) Don’t ignore the directory in the names of a.out libraries to be loaded. Use of
this option is strongly discouraged.

LD_NOWARN
(a.out only)(libc5) Suppress warnings about a.out libraries with incompatible minor version num-
bers.

LD_ORIGIN_PATH
(glibc since 2.1) Path where the binary is found (for non-set-user-ID programs).For security rea-
sons, since glibc 2.4,LD_ORIGIN_PATH is ignored for set-user-ID/set-group-ID binaries.

LD_POINTER_GUARD
(glibc since 2.4) Set to 0 to disable pointer guarding.Any other value enables pointer guarding,
which is also the default. Pointerguarding is a security mechanism whereby some pointers to
code stored in writable program memory (return addresses saved by setjmp(3) or function pointers
used by various glibc internals) are mangled semi-randomly to make it more difficult for an
attacker to hijack the pointers for use in the event of a buffer overrun or stack-smashing attack.

LD_PROFILE
(glibc since 2.1) Shared object to be profiled, specified either as a pathname or a soname.Profil-
ing output is written to the file whose name is: "$LD_PROFILE_OUTPUT/$LD_PROFILE.pro-
file".

LD_PROFILE_OUTPUT
(glibc since 2.1) Directory whereLD_PROFILE output should be written. If this variable is not
defined, or is defined as an empty string, then the default is/var/tmp. LD_PROFILE_OUTPUT
is ignored for set-user-ID and set-group-ID programs, which always use/var/profile.

LD_SHOW_AUXV
(glibc since 2.1) Show auxiliary array passed up from the kernel. For security reasons, since glibc
2.3.5,LD_SHOW_AUXV is ignored for set-user-ID/set-group-ID binaries.

LD_USE_LOAD_BIAS
By default (i.e., if this variable is not defined) executables and prelinked shared objects will honor
base addresses of their dependent libraries and (nonprelinked) position-independent executables
(PIEs) and other shared objects will not honor them.If LD_USE_LOAD_BIAS is defined wit the
value, both executables and PIEs will honor the base addresses.If LD_USE_LOAD_BIAS is
defined with the value 0, neither executables nor PIEs will honor the base addresses.This variable
is ignored by set-user-ID and set-group-ID programs.

GNU 2013-07-15 4

LD.SO(8) LinuxProgrammer’s Manual LD.SO(8)

LD_VERBOSE
(glibc since 2.1) If set to a nonempty string, output symbol versioning information about the pro-
gram if theLD_TRACE_LOADED_OBJECTS environment variable has been set.

LD_WARN
(ELF only)(glibc since 2.1.3) If set to a nonempty string, warn about unresolved symbols.

LDD_ARGV0
(libc5) argv[0] to be used byldd(1) when none is present.

FILES
/lib/ld.so

a.out dynamic linker/loader
/lib/ld−linux.so.{ 1,2}

ELF dynamic linker/loader
/etc/ld.so.cache

File containing a compiled list of directories in which to search for libraries and an ordered list of
candidate libraries.

/etc/ld.so.preload
File containing a whitespace-separated list of ELF shared libraries to be loaded before the pro-
gram.

lib*.so*
shared libraries

NOTES
The ld.so functionality is available for executables compiled using libc version 4.4.3 or greater. ELF func-
tionality is available since Linux 1.1.52 and libc5.

SEE ALSO
ldd(1), sln(1), getauxval(3), rtld-audit (7), ldconfig(8)

COLOPHON
This page is part of release 3.53 of the Linuxman-pages project. Adescription of the project, and informa-
tion about reporting bugs, can be found at http://www.kernel.org/doc/man−pages/.

GNU 2013-07-15 5

